Professor Christine H. Foyer

FRS; Adjunct Professor


Redox metabolism and signalling as a central integrator of plant growth and stress tolerance

Research Interests

Plant metabolism is driven by reduction and oxidation (redox) processes. Reductive reactions drive energy assimilation while oxidative processes liberate energy. During evolution redox reactions have been incorporated into regulatory and signalling pathways, such that they participate in nearly every aspect of plant biology.

Research in my lab seeks to understand how reactive oxygen species and antioxidants such as ascorbate, glutathione and catalase participate in the regulation of plant growth and defence under optimal and stress conditions, with the aim of using this information to improve crop productivity and sustainability of yields. In particular, we focus how on redox signals arising primary processes (photosynthesis, respiration) and antioxidants influence plant growth and defence responses. Recent focus has been placed on the roles of specific proteins such as the WHIRLY family of proteins, cysteine proteases and LEA proteins in plant responses to the environment.  Research on these proteins and the processes that they control is undertaken on a range of crop plants (maize, soya, broad bean, faba bean, wheat and barley) as well as Arabidopsis thaliana. We study plant responses to a range of abiotic stresses including low nitrogen, high and low-temperature stress and high atmospheric COlevels, as well as signalling and defences against aphids.  

Select Publications:
  1. Schnaubelt D, Dong Y, Queval G, Diaz-Vivancos P, Makgopa ME, Howell G, De Simone A, Bai J, Hannah MA &Foyer CH (2015) Low glutathione regulates gene expression and the redox potentials of the nucleus and cytosol in Arabidopsis thaliana. Plant Cell Environment38: 266-279. 
  2. Quain MD, Makgopa ME, Cooper J, Kunert KJ & Foyer, CH (2015) Ectopic phytocystatin expression alters nodule numbers and the nitrogen deficiency-dependent expression of cysteine proteases and their inhibitors in soybean (Glycine max). Phytochemistry 112: 179-187. 
  3. Comadira G, Rasool B, Karpinska B, Márquez García B, Morris J, Verrall SR, Bayer M, Hedley PE, Hancock RD, & Foyer CH (2015) WHIRLY1 functions in the control of responses to N-deficiency but not aphid infestation in barley (Hordeum vulgare). Plant Physiology 168: 1140-1151. 
  4. Schippers JHM, Foyer CH & van Dongen J T (2016) Redox regulation in shoot growth, SAM maintenance and flowering. Current Opinion in Plant Biology29: 121-128. 
  5. Cheng F, Yin L-L, Zhou J, Xia X-J, Shi K, Yu J-Q, Zhou Y-H, & Foyer CH (2016) Interactions between 2-Cys peroxiredoxins and ascorbate in autophagosome formation during the heat stress response in tomato, Journal of Experimental Botany67: 1919-1933. 
  6. Noctor G Mhamdi A, & Foyer CH (2016) Oxidative stress and antioxidative systems: recipes for successful data collection and interpretation. Plant Cell Environment 39: 1140-1160.
  7. Foyer CH, Lam H-M, Nguyen H T, Siddique KHM, Varshney R K, Colmer TD, Cowling W, Bramley H, Mori TA, Hodgson J M, Cooper JW, Miller T, Kunert K, Vorster J, Cullis C, Ozga JA, Wahlqvist ML, Liang Y, Shou H, ShiK, Yu J, Fodor N, Kaiser BN, Wong F-L, Valliyodan B & Considine MJ. (2016) Neglecting legumes has compromised human health and sustainable food production. Nature Plants 2: Article: 16112.  
  8. Karpinska B, Rasool B, Zhang K, Pastok D, Morris J, Verrall SR, Hedley PE, Hancock RD & Foyer CH (2017) The redox state of the apoplast influences the acclimation of photosynthesis and leaf metabolism to changing irradiance Plant Cell Environment 41, 1083-1097.
  9. de Simone A, Hubbard R, Viñegra de la Torre N, Velappan Y, Wilson M, Considine MJ, Soppe WJJ, & Foyer CH (2017) Redox changes during the cell cycle in the embryonic root meristem of Arabidopsis thalianaAntioxidants and Redox Signaling 27: 1505–1519.  
  10. Rasool B, McGowan J. Pastok D, Marcus SE, Morris J, Verrall SR, Hedley PE, Hancock RD & Foyer CH (2017) Redox control of aphid resistance through altered cell wall composition and nutritional quality. Plant Physiology175: 259-271
  11. Zhang H, Hu Z, Lei C, Zheng C, Wang J, Shao S, Li  X, Xia X, Cai X,  Zhou J, Zhou Y, Yu J, Foyer, CH & Shi K (2018) Plant phytosulfokine peptide initiates auxin-dependent immunity through cytosolic Ca2+ signaling in tomato. Plant Cell 30: 652–667.
  12. Plumb W, Townsend AJ, Rasool B, Alomrani S, Razak N, Karpinska B, Ruban AV & Foyer CH (2018) Ascorbate-mediated regulation of growth, photoprotection and photoinhibition in Arabidopsis thalianaJournal of Experimental Botany 69: 2823-2835. 
  13. Xie M, Chung C Y-L, Li M-W, Wong F-L, Wang X, Liu A, Wang Z, Leung A K-Y, Wong T-H, Tong SW, Xiao Z, Fan K, Ng M-S, Qi X, Yang L, Deng T, He L, Chen L, Fu A, Ding Q, He J, Chung G, Isobe S, Tanabata T, Valliyodan B, Nguyen HT, Cannon SB, Foyer CH, Chan TF & Lam HM (2019) A reference-grade wild soybean genome. Nature Communications 10: 1216.
  14. Zhou Y H, Ge S, Jin L, Yao, K, Wang Y, Wu XD. Zhou, J.  Xia, X, Shi, K, Foyer, CH & Yu JQ (2019) A novel CO2-responsive systemic signaling pathway controlling plant mycorrhizal symbiosis. New Phyologist 224: 106–116.
  15. Hu Z, Ma Q, Foyer CH, Lei C Choi HW, Zheng C, Li J, Zuo J, Mao Z, Mei Y, Yu J, Klessig DF & Shi K (2021)High CO2-and pathogen-driven expression of the carbonic anhydrase βCA3 confers basal immunity in tomato. New Phytologist 229: 2827–2843.