Research Articles 2018 onwards

 

2022

  1. Sharma, N., & Khurana, P. (2022). Genome-Wide Identification and Analysis of the TaSERK Gene Family in Bread Wheat Triticum aestivum L. and TaSERK8 Overexpression Study in Rice. Journal of Plant Growth Regulation. https://doi.org/10.1007/s00344-022-10877-x
  2. Ghosh, S., Bheri, M., Bisht, D., & Pandey, G. K. (2022). Calcium signaling and transport machinery: Potential for development of stress tolerance in plants. Current Plant Biology29. https://doi.org/10.1016/j.cpb.2022.100235
  3. Chaudhary, C., Sharma, N., & Khurana, P. (2022). Genome-wide identification of Aux/IAA and ARF gene families in bread wheat (Triticum aestivum L.). Protoplasma. https://doi.org/10.1007/s00709-022-01773-y
  4. Singh, S., Sharma, P., Mishra, S., Khurana, P., & Khurana, J. P. (2022). CRY2 gene of rice (Oryza sativa subsp. indica) encodes a blue light sensory receptor involved in regulating flowering, plant height and partial photomorphogenesis in dark. Plant Cell Reports. https://doi.org/10.1007/s00299-022-02937-z
  5. Jain, N., Khurana, P., & Khurana, J. P. (2022). AtTLP2, a Tubby-like protein, plays intricate roles in abiotic stress signalling. Plant Cell Reports. https://doi.org/10.1007/s00299-022-02953-z
  6. Meena, S., Samtani, H., & Khurana, P. (2022). Elucidating the functional role of heat stress transcription factor A6b (TaHsfA6b) in linking heat stress response and the unfolded protein response in wheat. Plant Molecular Biology108(6), 621–634. https://doi.org/10.1007/s11103-022-01252-1
  7. Khurana, R., Bhimrajka, S., Sivakrishna Rao, G., Verma, V., Boora, N., Gawande, G., … Kapoor, S. (2022). Characterization of Transcription Regulatory Domains of OsMADS29: Identification of Proximal Auxin-Responsive Domains and a Strong Distal Negative Element. Frontiers in Plant Science13. https://doi.org/10.3389/fpls.2022.850956
  8. Samtani, H., Sharma, A., & Khurana, P. (2022). Wheat ocs-Element Binding Factor 1 Enhances Thermotolerance by Modulating the Heat Stress Response Pathway. Frontiers in Plant Science13. https://doi.org/10.3389/fpls.2022.914363
  9. Singh, G., Banerjee, G., Sarkar, N. K., Sinha, A. K., & Grover, A. (2022). Transcriptional regulation of rice HSP101 promoter: Mitogen-activated protein kinase-mediated HSFA6a phosphorylation affects its stability and transactivation. Physiologia Plantarum174(4). https://doi.org/10.1111/ppl.13754
  10. Sharma, P., Mishra, S., Burman, N., Chatterjee, M., Singh, S., Pradhan, A. K., … Khurana, J. P. (2022). Characterization of Cry2 genes (CRY2a and CRY2b) of B. napus and comparative analysis of BnCRY1 and BnCRY2a in regulating seedling photomorphogenesis. Plant Molecular Biology110(1–2), 161–186. https://doi.org/10.1007/s11103-022-01293-6
  11. Gambhir, P., Singh, V., Parida, A., Raghuvanshi, U., Kumar, R., & Sharma, A. K. (2022). Ethylene response factor ERF.D7 activates auxin response factor 2 paralogs to regulate tomato fruit ripening. Plant Physiology190(4), 2775–2796. https://doi.org/10.1093/plphys/kiac441
  12. Sasi, J. M., VijayaKumar, C., Kukreja, B., Budhwar, R., Shukla, R. N., Agarwal, M., & Katiyar-Agarwal, S. (2022). Integrated transcriptomics and miRNAomics provide insights into the complex multi-tiered regulatory networks associated with coleoptile senescence in rice. Frontiers in Plant Science13. https://doi.org/10.3389/fpls.2022.985402
  13. Sharma, N., Chaudhary, C., & Khurana, P. (2022). Transcriptome profiling of somatic embryogenesis in wheat (Triticum aestivum L.) influenced by auxin, calcium and brassinosteroid. Plant Growth Regulation98(3), 599–612. https://doi.org/10.1007/s10725-022-00883-0
  14. Samtani, H., Sharma, A., Khurana, J. P., & Khurana, P. (2022). Thermosensing in plants: Deciphering the mechanisms involved in heat sensing and their role in thermoresponse and thermotolerance. Environmental and Experimental Botany203. https://doi.org/10.1016/j.envexpbot.2022.105041
  15. Kanwar, P., Sanyal, S. K., Mahiwal, S., Ravi, B., Kaur, K., Fernandes, J. L., … Pandey, G. K. (2022). CIPK9 targets VDAC3 and modulates oxidative stress responses in Arabidopsis. Plant Journal109(1), 241–260. https://doi.org/10.1111/tpj.15572
  16. Gour, P., Kansal, S., Agarwal, P., Mishra, B. S., Sharma, D., Mathur, S., & Raghuvanshi, S. (2022). Variety-specific transcript accumulation during reproductive stage in drought-stressed rice. Physiologia Plantarum174(1). https://doi.org/10.1111/ppl.13585
  17. Sharma, N., & Khurana, P. (2022). Genome-wide identification, characterization and expression analysis of the BRI1 gene family in Triticum aestivum L. Plant Biotechnology Reports. https://doi.org/10.1007/s11816-022-00762-0
  18. Gambhir, P., Singh, V., Raghuvanshi, U., Parida, A. P., Pareek, A., Roychowdhury, A., … Sharma, A. K. (2022). A glutathione-independent DJ-1/PfpI domain-containing tomato glyoxalaseIII2, SlGLYIII2, confers enhanced tolerance under salt and osmotic stresses. Plant Cell and Environment. https://doi.org/10.1111/pce.14493
  19. Anwar, K., Joshi, R., Morales, A., Das, G., Yin, X., Anten, N. P. R., … Pareek, A. (2022). Genetic diversity reveals synergistic interaction between yield components could improve the sink size and yield in rice. Food and Energy Security11(2). https://doi.org/10.1002/fes3.334
  20. Mehra, P., Pandey, B. K., Verma, L., Prusty, A., Singh, A. P., Sharma, S., … Tyagi, A. K. (2022). OsJAZ11 regulates spikelet and seed development in rice. Plant Direct6(5). https://doi.org/10.1002/pld3.401
  21. Ranjan, R., Malik, N., Sharma, S., Agarwal, P., Kapoor, S., & Tyagi, A. K. (2022). OsCPK29 interacts with MADS68 to regulate pollen development in rice. Plant Science321. https://doi.org/10.1016/j.plantsci.2022.111297
  22. Jain, N., Khurana, P., & Khurana, J. P. (2022). A rapid and efficient protocol for genotype-independent, Agrobacterium-mediated transformation of indica and japonica rice using mature seed-derived embryogenic calli. Plant Cell, Tissue and Organ Culture151(1), 59–73. https://doi.org/10.1007/s11240-022-02331-3
  23. Dahal, S., Gour, P., Raghuvanshi, S., Prasad, Y. K., Saikia, D., & Ghatani, S. (2022). Multi-stage transcriptome profiling of the neglected food-borne echinostome Artyfechinostomum sufrartyfex reveal potential diagnostic and drug targets. Acta Tropica233. https://doi.org/10.1016/j.actatropica.2022.106564
  24. Mahiwal, S., & Pandey, G. K. (2022). Potassium: a vital nutrient mediating stress tolerance in plants. Journal of Plant Biochemistry and Biotechnology31(4), 705–719. https://doi.org/10.1007/s13562-022-00775-4
  25. Ambreen, H., Oraon, P. K., Wahlang, D. R., Satyawada, R. R., Katiyar-Agarwal, S., Agarwal, M., … Goel, S. (2022). Long-read-based draft genome sequence of Indian black gram IPU-94-1 ‘Uttara’: Insights into disease resistance and seed storage protein genes. Plant Genome. https://doi.org/10.1002/tpg2.20234
  26. Sasi, J. M., Gupta, S., Singh, A., Kujur, A., Agarwal, M., & Katiyar-Agarwal, S. (2022). Know when and how to die: gaining insights into the molecular regulation of leaf senescence. Physiology and Molecular Biology of Plants28(8), 1515–1534. https://doi.org/10.1007/s12298-022-01224-1

 

2021

  1. Mahiwal, S., & Pandey, G. K. (2021). Potassium: An emerging signal mediator in plants? Plant Nutrition and Food Security in the Era of Climate Change. https://doi.org/10.1016/B978-0-12-822916-3.00012-3
  2. Kant, R., Kumari, K., Mishra, P., Rai, R., Singh, K., & Dasgupta, I. (2021). Virus-induced gene silencing of Xa38 compromises the resistance towards bacterial blight disease of rice. Physiological and Molecular Plant Pathology113. https://doi.org/10.1016/j.pmpp.2020.101583
  3. Chaudhary, C., Sharma, N., & Khurana, P. (2021). Decoding the wheat awn transcriptome and overexpressing TaRca1β in rice for heat stress tolerance. Plant Molecular Biology105(1–2), 133–146. https://doi.org/10.1007/s11103-020-01073-0
  4. Ghosh, S., Jha, S. K., & Pandey, G. K. (2021). Cation/H+ exchanger in plantsCalcium Transport Elements in Plants. https://doi.org/10.1016/B978-0-12-821792-4.00012-6
  5. Kansal, S., Panwar, V., Mutum, R. D., & Raghuvanshi, S. (2021). Investigations on Regulation of MicroRNAs in Rice Reveal [Ca2+]<inf>cyt</inf> Signal Transduction Regulated MicroRNAs. Frontiers in Plant Science12. https://doi.org/10.3389/fpls.2021.720009
  6. Manjunatha, S. R., Gowda, M., Narayanaswamy, K. C., Jagadish, K. S., Dhanyalakshmi, K. H., Khurana, P., & Nataraja, K. N. (2021). Assessing the life cycle of pests, Diaphania pulverulentalis (Hampson) and Maconellicoccus hirsutus Green, reared on transgenic mulberry. 3 Biotech11(2). https://doi.org/10.1007/s13205-020-02621-7
  7. Babbar, R., Karpinska, B., Grover, A., & Foyer, C. H. (2021). Heat-Induced Oxidation of the Nuclei and Cytosol. Frontiers in Plant Science11. https://doi.org/10.3389/fpls.2020.617779
  8. Akash, Parida, A. P., Srivastava, A., Mathur, S., Sharma, A. K., & Kumar, R. (2021). Identification, evolutionary profiling, and expression analysis of F-box superfamily genes under phosphate deficiency in tomato. Plant Physiology and Biochemistry162, 349–362. https://doi.org/10.1016/j.plaphy.2021.03.002
  9. Singh, G., Sarkar, N. K., & Grover, A. (2021). Tango between Ethylene and HSFA2 Settles Heat Tolerance. Trends in Plant Science26(5), 429–432. https://doi.org/10.1016/j.tplants.2021.03.003
  10. Jha, S. K., & Pandey, G. K. (2021). Role of cyclic nucleotide-gated channels in stress and development in plantsCalcium Transport Elements in Plants. https://doi.org/10.1016/B978-0-12-821792-4.00016-3
  11. Jamra, G., Agarwal, A., Singh, N., Sanyal, S. K., Kumar, A., & Pandey, G. K. (2021). Ectopic expression of finger millet calmodulin confers drought and salinity tolerance in Arabidopsis thaliana. Plant Cell Reports40(11), 2205–2223. https://doi.org/10.1007/s00299-021-02743-z
  12. Singh, G., Sarkar, N. K., & Grover, A. (2021). Hsp70, sHsps and ubiquitin proteins modulate HsfA6a-mediated Hsp101 transcript expression in rice (Oryza sativa L.). Physiologia Plantarum173(4), 2055–2067. https://doi.org/10.1111/ppl.13552
  13. Verma, P., Sanyal, S. K., & Pandey, G. K. (2021). Ca2+–CBL–CIPK: a modulator system for efficient nutrient acquisition. Plant Cell Reports40(11), 2111–2122. https://doi.org/10.1007/s00299-021-02772-8
  14. Tiwari, L. D., Kumar, R., Sharma, V., Sahu, A. K., Sahu, B., Naithani, S. C., & Grover, A. (2021). Stress and development phenotyping of Hsp101 and diverse other Hsp mutants of Arabidopsis thaliana. Journal of Plant Biochemistry and Biotechnology30(4), 889–905. https://doi.org/10.1007/s13562-021-00706-9
  15. Negi, N., & Khurana, P. (2021). A salicylic acid inducible mulberry WRKY transcription factor, MiWRKY53 is involved in plant defence response. Plant Cell Reports40(11), 2151–2171. https://doi.org/10.1007/s00299-021-02710-8
  16. Bhaskar, A., Paul, L. K., Sharma, E., Jha, S., Jain, M., & Khurana, J. P. (2021). OsRR6, a type-A response regulator in rice, mediates cytokinin, light and stress responses when over-expressed in Arabidopsis. Plant Physiology and Biochemistry161, 98–112. https://doi.org/10.1016/j.plaphy.2021.01.047
  17. Kaur, A., Nijhawan, A., Yadav, M., & Khurana, J. P. (2021). OsbZIP62/OsFD7, a functional ortholog of FLOWERING LOCUS D, regulates floral transition and panicle development in rice. Journal of Experimental Botany72(22), 7826–7845. https://doi.org/10.1093/jxb/erab396

 

 

2020

  1. Pareek, A., Soni, V., Sopory, S. K., Khurana, J. P., Sowjanya Sree, K., Tyagi, A. K., … Govindjee, G. (2020). Satish Chandra Maheshwari (1933–2019)—a brilliant, passionate and an outstanding shining light for all of plant biology. Physiology and Molecular Biology of Plants26(6), 1087–1098. https://doi.org/10.1007/s12298-020-00794-2
  2. Sarkar, N. K., Kotak, S., Agarwal, M., Kim, Y.-K., & Grover, A. (2020). Silencing of class I small heat shock proteins affects seed-related attributes and thermotolerance in rice seedlings. Planta251(1). https://doi.org/10.1007/s00425-019-03318-9
  3. Sanyal, S. K., Kanwar, P., Fernandes, J. L., Mahiwal, S., Yadav, A. K., Samtani, H., … Pandey, G. K. (2020). Arabidopsis Mitochondrial Voltage-Dependent Anion Channels Are Involved in Maintaining Reactive Oxygen Species Homeostasis, Oxidative and Salt Stress Tolerance in Yeast. Frontiers in Plant Science11. https://doi.org/10.3389/fpls.2020.00050
  4. Kumar, A., Daware, A., Kumar, A., Kumar, V., Gopala Krishnan, S., Mondal, S., … Thakur, J. K. (2020). Genome-wide analysis of polymorphisms identified domestication-associated long low-diversity region carrying important rice grain size/weight quantitative trait loci. Plant Journal103(4), 1525–1547. https://doi.org/10.1111/tpj.14845
  5. Srivastava, A. K., Shankar, A., Chandran, A. K. N., Sharma, M., Jung, K.-H., Suprasanna, P., & Pandey, G. K. (2020). Emerging concepts of potassium homeostasis in plants. Journal of Experimental Botany71(2), 608–619. https://doi.org/10.1093/jxb/erz458
  6. Tiwari, L. D., Khungar, L., & Grover, A. (2020). AtHsc70-1 negatively regulates the basal heat tolerance in Arabidopsis thaliana through affecting the activity of HsfAs and Hsp101. Plant Journal103(6), 2069–2083. https://doi.org/10.1111/tpj.14883
  7. Singh, D., Yadav, R., Kaushik, S., Wadhwa, N., Kapoor, S., & Kapoor, M. (2020). Transcriptome Analysis of ppdnmt2 and Identification of Superoxide Dismutase as a Novel Interactor of DNMT2 in the Moss Physcomitrella patens. Frontiers in Plant Science11. https://doi.org/10.3389/fpls.2020.01185
  8. Maitra Majee, S., Sharma, E., Singh, B., & Khurana, J. P. (2020). Drought-induced protein (Di19-3) plays a role in auxin signaling by interacting with IAA14 in Arabidopsis. Plant Direct4(6). https://doi.org/10.1002/pld3.234
  9. Singh, N., & Pandey, G. K. (2020). Calcium signatures and signal transduction schemes during microbe interactions in Arabidopsis thaliana. Journal of Plant Biochemistry and Biotechnology29(4), 675–686. https://doi.org/10.1007/s13562-020-00604-6
  10. Agarwal, P., & Khurana, P. (2020). TaZnF, a C3HC4 type RING zinc finger protein from Triticum aestivum is involved in dehydration and salinity stress. Journal of Plant Biochemistry and Biotechnology29(3), 395–406. https://doi.org/10.1007/s13562-019-00546-8
  11. Kumar, R., Khungar, L., Shimphrui, R., Tiwari, L. D., Tripathi, G., Sarkar, N. K., … Grover, A. (2020). AtHsp101 research sets course of action for the genetic improvement of crops against heat stress. Journal of Plant Biochemistry and Biotechnology29(4), 715–732. https://doi.org/10.1007/s13562-020-00624-2
  12. Bhatnagar, A., Singh, S., Khurana, J. P., & Burman, N. (2020). HY5-COP1: the central module of light signaling pathway. Journal of Plant Biochemistry and Biotechnology29(4), 590–610. https://doi.org/10.1007/s13562-020-00623-3
  13. Kumar, G., & Dasgupta, I. (2020). Comprehensive molecular insights into the stress response dynamics of rice (Oryza sativa L.) during rice tungro disease by RNA-seq-based comparative whole transcriptome analysis. Journal of Biosciences45(1). https://doi.org/10.1007/s12038-020-9996-x
  14. Khurana, J. P., & Srinivasan, R. (2020). Editorial. Journal of Plant Biochemistry and Biotechnology29(4), 573–574. https://doi.org/10.1007/s13562-020-00631-3
  15. Burman, N., Chandran, D., & Khurana, J. P. (2020). A Rapid and Highly Efficient Method for Transient Gene Expression in Rice Plants. Frontiers in Plant Science11. https://doi.org/10.3389/fpls.2020.584011
  16. Malik, N., Ranjan, R., Parida, S. K., Agarwal, P., & Tyagi, A. K. (2020). Mediator subunit OsMED14_1 plays an important role in rice development. Plant Journal101(6), 1411–1429. https://doi.org/10.1111/tpj.14605
  17. Raxwal, V. K., Ghosh, S., Singh, S., Katiyar-Agarwal, S., Goel, S., Jagannath, A., … Agarwal, M. (2020). Abiotic stress-mediated modulation of the chromatin landscape in Arabidopsis thaliana. Journal of Experimental Botany71(17), 5280–5293. https://doi.org/10.1093/jxb/eraa286
  18. Saripalli, G., Singh, K., Gautam, T., Kumar, S., Raghuvanshi, S., Prasad, P., … Gupta, P. K. (2020). Genome-wide analysis of H3K4me3 and H3K27me3 modifications due to Lr28 for leaf rust resistance in bread wheat (Triticum aestivum). Plant Molecular Biology104(1–2), 113–136. https://doi.org/10.1007/s11103-020-01029-4

2019

  1. Basu, U., Upadhyaya, H. D., Srivastava, R., Daware, A., Malik, N., Sharma, A., … Parida, S. K. (2019). Abc transporter-mediated transport of glutathione conjugates enhances seed yield and quality in chickpea. Plant Physiology180(1), 253–275. https://doi.org/10.1104/pp.18.00934
  2. Parida, A. P., Sharma, A., & Sharma, A. K. (2019). AtMBD4: A methylated DNA binding protein negatively regulates a subset of phosphate starvation genes. Journal of Biosciences44(1). https://doi.org/10.1007/s12038-018-9843-5
  3. Sanyal, S. K., Mahiwal, S., & Pandey, G. K. (2019). Calcium signaling: A communication network that regulates cellular processesSensory Biology of Plants. https://doi.org/10.1007/978-981-13-8922-1_11
  4. Basu, U., Narnoliya, L., Srivastava, R., Sharma, A., Bajaj, D., Daware, A., … Parida, S. K. (2019). CLAVATA signaling pathway genes modulating flowering time and flower number in chickpea. Theoretical and Applied Genetics. https://doi.org/10.1007/s00122-019-03335-y
  5. Tiwari, L. D., & Grover, A. (2019). Cpn60β4 protein regulates growth and developmental cycling and has bearing on flowering time in Arabidopsis thaliana plants. Plant Science286, 78–88. https://doi.org/10.1016/j.plantsci.2019.05.022
  6. Parihar, V., Arya, D., Walia, A., Tyagi, V., Dangwal, M., Verma, V., … Kapoor, M. (2019). Functional characterization of LIKE HETEROCHROMATIN PROTEIN 1 in the moss Physcomitrella patens: its conserved protein interactions in land plants. Plant Journal97(2), 221–239. https://doi.org/10.1111/tpj.14182
  7. Kant, R., & Dasgupta, I. (2019). Gene silencing approaches through virus-based vectors: speeding up functional genomics in monocots. Plant Molecular Biology. https://doi.org/10.1007/s11103-019-00854-6
  8. Basu, U., Bajaj, D., Sharma, A., Malik, N., Daware, A., Narnoliya, L., … Parida, S. K. (2019). Genetic dissection of photosynthetic efficiency traits for enhancing seed yield in chickpea. Plant Cell and Environment42(1), 158–173. https://doi.org/10.1111/pce.13319
  9. Sasi, J. M., Kumar, C. V., Mani, B., Bhardwaj, A. R., Agarwal, M., & Katiyar-Agarwal, S. (2019). Identification and characterization of miRNAs during flag leaf senescence in rice by high-throughput sequencing. Plant Physiology Reports24(1), 1–14. https://doi.org/10.1007/s40502-019-0436-6
  10. Kaur, P., Yadav, I. S., Yadav, B., Mahato, A., Gupta, O. P., Dolezel, J., … Singh, K. (2019). In silico annotation of 458 genes identified from comparative analysis of Full length cDNAs and NextGen Sequence of chromosome 2A of hexaploid wheat. Journal of Plant Biochemistry and Biotechnology28(1), 25–34. https://doi.org/10.1007/s13562-018-0460-z
  11. Gambhir, P., Bhola, D., Sharma, S., Mudgil, Y., & Sharma, A. K. (2019). Integration of multiple signaling cuesSensory Biology of Plants. https://doi.org/10.1007/978-981-13-8922-1_21
  12. Sharma, M., & Pandey, G. K. (2019). OsPUB75, an Armadillo/U-box protein interacts with GSK3 kinase and functions as negative regulator of abiotic stress responses. Environmental and Experimental Botany161, 388–398. https://doi.org/10.1016/j.envexpbot.2018.10.022
  13. Agarwal, P., & Khurana, P. (2019). Overexpression of TaMADS from wheat promotes flowering by upregulating expression of floral promoters and provides protection against thermal stress. Plant Gene17. https://doi.org/10.1016/j.plgene.2018.100168
  14. Bheri, M., & Pandey, G. K. (2019). Protein phosphatases meet reactive oxygen species in plant signaling networks. Environmental and Experimental Botany161, 26–40. https://doi.org/10.1016/j.envexpbot.2018.10.032
  15. Gogoi, A., Kaldis, A., Dasgupta, I., Borah, B. K., & Voloudakis, A. (2019). Sense-and antisense-mediated resistance against sri lankan cassava mosaic virus (Slcmv) in nicotiana benthamiana. Biologia Plantarum63, 455–464. https://doi.org/10.32615/bp.2019.079
  16. Das, S., Parida, S. K., Agarwal, P., & Tyagi, A. K. (2019). Transcription factor OsNF-YB9 regulates reproductive growth and development in rice. Planta250(6), 1849–1865. https://doi.org/10.1007/s00425-019-03268-2
  17. Narnoliya, L., Basu, U., Bajaj, D., Malik, N., Thakro, V., Daware, A., … Parida, S. K. (2019). Transcriptional signatures modulating shoot apical meristem morphometric and plant architectural traits enhance yield and productivity in chickpea. Plant Journal98(5), 864–883. https://doi.org/10.1111/tpj.14284
2018
  1. Borah, P. and Khurana, J.P.(2018). The OsFBK1 E3 Ligase Subunit Affects Anther and Root Secondary Cell Wall Thickenings by Mediating Turnover of a Cinnamoyl-CoA Reductase. Plant Physiol. 176: 2148–2165.
  2. Singh, B., Khurana, P., Khurana, J.P., and Singh, P.(2018). Gene encoding vesicle-associated membrane protein-associated protein from Triticum aestivum (TaVAP) confers tolerance to drought stress. Cell Stress Chaperones 23: 411–428.
  3. Shankar, A., Fernandes, J.L., Kaur, K., Sharma, M., Kundu, S., and Pandey, G.K.(2018). Rice phytoglobins regulate responses under low mineral nutrients and abiotic stresses in Arabidopsis thaliana. Plant. Cell Environ. 41: 215–230.
  4. Agarwal, P. and Khurana, P.(2018). Characterization of a novel zinc finger transcription factor (TaZnF) from wheat conferring heat stress tolerance in Arabidopsis. Cell Stress Chaperones 23: 253–267.
  5. Pandey, A., Yadav, V., Sharma, A., Khurana, J.P., and Pandey, G.K.(2018). The unc-53 gene negatively regulates rac GTPases to inhibit unc-5 activity during Distal tip cell migrations in C. elegans. Cell Adh. Migr. 12: 195–203.
  6. Jain, N., Vergish, S., and Khurana, J.P.(2018). Validation of house-keeping genes for normalization of gene expression data during diurnal/circadian studies in rice by RT-qPCR. Sci. Rep. 8: 3203.
  7. Lavania, D., Dhingra, A., and Grover, A.(2018). Analysis of transactivation potential of rice (Oryza sativa L.) heat shock factors. Planta 247: 1267–1276.
  8. Sharma, S., Kumar, G., and Dasgupta, I.(2018). Simultaneous resistance against the two viruses causing rice tungro disease using RNA interference. Virus Res. 255: 157–164.
  9. Yadav, A.K., Jha, S.K., Sanyal, S.K., Luan, S., and Pandey, G.K.(2018). Arabidopsis calcineurin B-like proteins differentially regulate phosphorylation activity of CBL-interacting protein kinase 9. Biochem. J. 475: 2621–2636.
  10. Hairat, S., Baranwal, V.K., and Khurana, P.(2018). Identification of Triticum aestivum nsLTPs and functional validation of two members in development and stress mitigation roles. Plant Physiol. Biochem.  PPB 130: 418–430.
  11. Singh, G., Sarkar, N.K., and Grover, A.(2018). Mapping of domains of heat stress transcription factor OsHsfA6a responsible for its transactivation activity. Plant Sci. 274: 80–90.
  12. Zarreen, F., Kumar, G., Johnson, A.M.A., and Dasgupta, I.(2018). Small RNA-based interactions between rice and the viruses which cause the tungro  disease. Virology 523: 64–73.
  13. Appels, R. et al.(2018). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361.
  14. Sharma, E., Jain, M., and Khurana, J.P.(2018). Differential quantitative regulation of specific gene groups and pathways under drought stress in rice. Genomics.
  15. Gahlaut, V., Baranwal, V.K., and Khurana, P.(2018). miRNomes involved in imparting thermotolerance to crop plants. 3 Biotech 8: 497.
  16. Sharma, C., Kumar, S., Saripalli, G., Jain, N., Raghuvanshi, S., Sharma, J.B., Prabhu, K. V, Sharma, P.K., Balyan, H.S., and Gupta, P.K.(2019). H3K4/K9 acetylation and Lr28-mediated expression of six leaf rust responsive genes in wheat (Triticum aestivum). Mol. Genet. Genomics 294: 227–241.